

Welcome to WorkBench’s documentation

[image: WorkBench Logo]

WorkBench is a hierarchical environment manager for *nix shells. It sources
shell-code distributed across multiple levels of a folder hierarchy and
invokes environments with the combination. Code could thus be implemented
to operate at different scopes, allowing clear overrides at each folder depth
and easy overall maintenance while managing several hundred environments.

WorkBench is a minimalistic framework. It is extendable and configurable,
and can adapt to a variety of use-cases. It is implemented as a single
bash script, and designed to work with minimal dependencies even on
vanilla *nix systems.

Getting Started:

	Installation
	Install from source

	Configuration
	Configuration using rcfile

	The WorkBench Home directory

	Completion

Using WorkBench:

	Introduction to subshells

	WorkBench Concepts
	Introduction

	Shelves and Benches

	Analogy

	Benefits

	Usage Guide
	View version and env – [wb -V, wb -E]

	Operating on Shelves and Benches – [wb s, wb b]

	Auto-generated workbench and Entrypoints

	Executing workbench environments – [wb a, wb r, wb n]

	Environment Variables

	Exit Codes

	Security
	Single User Context

	Detecting changes in your WORKBENCH_HOME

	Canonical paths and directory traversal

	Temp files

Developer Notes:

	Contribution
	Where can I contribute?

	How do I start?

	Testing

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation

WorkBench is under active development. A package based installer is
currently not available.

Install from source

WorkBench (wb) is a single bash file. You can use curl or wget to fetch
the bleeding edge wb script from the WorkBench repository.

Using curl

curl -fsSL https://raw.githubusercontent.com/pshirali/workbench/master/wb > wb

Using wget

wget https://raw.githubusercontent.com/pshirali/workbench/master/wb

Ensure that wb is placed in a folder which is in your PATH.
Set the execute bit for wb by running chmod +x <path/to/wb>

Configuration

WorkBench accepts its configuration from environment variables which
have the prefix WORKBENCH_. WorkBench comes with sane defaults
and external configuration is optional.

Configuration using rcfile

WorkBench can also source an rcfile on invocation. The default location
for the rcfile is $HOME/.workbenchrc. If a file at the default
location exists, then it is automatically sourced.

A custom rcfile can be specified using the environment variable
WORKBENCH_RC pointing to a file that already exists.

The rcfile can be used to define multiple configuration parameters
at once.

Note

The rcfile overrides environment variables defined in the shell.

A full list of configurable parameters are available in subsequent chapters.

The WorkBench Home directory

WorkBench operates on files inside a directory defined by WORKBENCH_HOME.
If WORKBENCH_HOME is undefined, the default home directory
$HOME/.workbench is used. WorkBench automatically creates the
necessary folder(s) on invocation.

Completion

A bash completer for WorkBench is available in the completion
subdirectory of the WorkBench repo.

To deploy it:

	Download the file completion/wb_complete.bash

	Add the following line to your .bashrc or .bash_profile where
<path/to> is the directory where wb_complete.bash is located

source "<path/to>/wb_complete.bash"

Introduction to subshells

Note

Skip this section if you are already familiar with bash subshells

Consider a file abcd with the contents below:

export ABCD=10
show_abcd () {
 echo "The value of ABCD is ${ABCD}"
}
alias c=clear

A bash subshell could be invoked using:

bash --rcfile ./abcd

While the prompt remains the same, a new interactive shell is now active.
In this state, the following behavior can be observed:

>> echo $ABCD # value from the environemnt variable is printed
10

>> show_abcd # a bash function is invoked
The value of ABCD is 10

>> c # alias for `clear`. Clears the screen.

>> exit # exits the subshell

On exit all context from the subshell is lost. It may be observed
that executing the same commands in the parent shell does not result
in the same behavior as what was seen in the subshell.

An environment is a subshell initialised with environment variables,
functions or aliases which caters specifically to a project or a task
at hand.

By using environments:

	The parent shell’s namespace remains free of project-specific declarations

	Declarations are local to each environment. Commands and variables by the
same name could be declared in each environment, which perform operations
unique to that environment.

	It is easy to exit from the subshell and unload the entire environment
at once.

WorkBench Concepts

Introduction

WorkBench makes it easy to work with a large number of custom shell
environment scripts, each of which could be tailor-made for a project or task.

WorkBench sources shell code spread across different depths of a directory
tree to construct an environment automatically. Code could thus be implemented
in parts, residing in files at different directory depths, and without
any hardcoded references.

WorkBench operates only on files present inside a directory as defined by
WORKBENCH_HOME. It uses two abstract terms to refer to
parts of a to-be-assembled environment; namely Shelf and Bench.

Shelves and Benches

EXAMPLE: Consider a WORKBENCH_HOME with the following structure:

WORKBENCH_HOME
 ├── ash.bench # BENCH
 ├── bar/
 │ ├── baz/
 │ │ ├── maple.bench # BENCH
 │ │ └── wb.shelf # SHELF
 │ └── birch.bench # BENCH
 ├── foo/
 │ ├── pine.bench # BENCH
 │ └── wb.shelf # SHELF
 └── wb.shelf # SHELF

Shelf

A shelf is WORKBENCH_HOME, or any subdirectory inside it,
which contains the file as defined by WORKBENCH_SHELF_FILE. The default
value for WORKBENCH_SHELF_FILE is wb.shelf. A shelf is always a
path relative to WORKBENCH_HOME. Shelf names end with a trailing /
as they represent the directory containing WORKBENCH_SHELF_FILE and not
the file itself.

In the example above, the file wb.shelf is present at three locations.
Hence, there are three shelves here.

/
foo/
bar/baz/

The table below maps the name of the shelf to the underlying resource file:

	Shelf Name

	Underlying resource filename

	/

	WORKBENCH_HOME/wb.shelf

	foo/

	WORKBENCH_HOME/foo/wb.shelf

	bar/baz/

	WORKBENCH_HOME/bar/baz/wb.shelf

The subdirectory bar/ is not a shelf because it doesn’t
contain wb.shelf.

Bench

A bench is a file anywhere inside WORKBENCH_HOME with the
extension as defined by WORKBENCH_BENCH_EXTN. The default value for
WORKBENCH_BENCH_EXTN is bench. The extension separator . is
assumed automatically and is not part of the value. Bench names are
representative of files. They do not include the trailing
.<WORKBENCH_BENCH_EXTN>

In the example above, there are four files with a .bench extension.
Hence, four benches.

ash
bar/baz/maple
bar/birch
foo/pine

The table below maps the name of the bench to the underlying resource file:

	Bench Name

	Underlying resource filename

	ash

	WORKBENCH_HOME/ash.bench

	bar/baz/maple

	WORKBENCH_HOME/bar/baz/maple.bench

	bar/birch

	WORKBENCH_HOME/bar/birch.bench

	foo/pine

	WORKBENCH_HOME/foo/pine.bench

Analogy

Analogous to a real workbench, the top of a bench is where the work
gets done. A discerning artisan might place minimal tools required for the
task at hand on the bench, while rest of the tools might be placed in
shelves, each of which ordered based on the frequency in which they get
used; frequently used tools being closer than infrequent ones.

The abstract shelf (a place to stow tools) may also be imagined as a
pegboard where tools are hung for easy access. An artisan can locate any
tool quickly, use it and put it back.

In WorkBench, the shelf hierarchy is provided by the possible presence
of the WORKBENCH_SHELF_FILE at different directory depths leading upto
the Bench.

Code that is declared in a Shelf at the root; that is WORKBENCH_HOME
will be sourced by every workbench. Code that is applicable only to a
specific set of environments could be defined in Shelves in a subdirectory
at the appropriate depth. Thus declarations & implementations common
to multiple environments get organised into Shelves, while declarations
which uniquely associate with one environment get placed in a Bench.

A pegboard approach could also be implemented by declaring functions in
various Shelves but not calling them. The Bench would call those
functions with various parameters for the task at hand.

Benefits

	Overall there is less code to maintain.

	It is easy to influence control on a whole group of environments by moving
code to a Shelf at the appropriate subdirectory

	Redeclaration results in overriding. Code in a shelf at a deeper depth
overrides those at lower depths (closer to WORKBENCH_HOME). Code in
a bench overrides all shelves. The workbench tree could be designed
to be shallow, or deeply nested to cater to the amount of overriding
required.

	The hierarchical structure lends itself to organising and managing a tree
of hundreds of benches easily.

Usage Guide

WorkBench has a minimal set of commands. They are also short (usually one
character).

Note

The following convention denotes OR.
Example: wb a|b|c means wb a OR wb b OR wb c

View version and env – [wb -V, wb -E]

wb -V prints the version of WorkBench being used.

wb -E lists all environment variables starting with WORKBENCH_.
These environment variables may be defined in your current shell, or
may be defined in a WORKBENCH_RC file.

If you use an rcfile with WorkBench, the values you set in the rcfile
will apply over everything else. The rcfile is sourced on every wb
invocation regardless of the command.

Operating on Shelves and Benches – [wb s, wb b]

The following operations can be performed on shelves and benches:.

List

WorkBenches can be listed using wb s|b

Print path to the underlying file

wb s|b <name>, where <name> is either a <shelfName> or <benchName>
prints the absolute path to the underlying resource file associated with
that shelf or bench.

The path is generated and displayed for non-existent shelves and benches as
well. A non-zero exit-code is returned if a shelf or bench doesn’t exist.

Run a command against the underlying file

wb s|b [options] <name> <command> [[arg]..]

Runs <command> [[arg]..] <path-to-underlying-file-for-name>

Examples:

wb s <shelfName> cat # view the file WORKBENCH_HOME/.../<shelf-file>
wb b <benchName> vim # edit the file WORKBENCH_HOME/.../<bench-file> in ViM

Commands execute only when a <shelfName> or <benchName> exist on disk.
It is possible to create a new shelf or bench inline, just before
running a command on it by adding the --new switch.

wb s --new <newShelfName> vim

WorkBench prompts for confirmation if the <command> is rm. The
--yes switch can be used to indicate Yes to skip the prompt. Alternatively,
WORKBENCH_AUTOCONFIRM can be set to any non-empty value to disable
this prompt and assume Yes always.

Auto-generated workbench and Entrypoints

A workbench is the auto-generated code composed by WorkBench (the tool),
when the command wb a|r|n <benchName> is executed.

The switch --dump can be used to print the auto-generated code on stdout
instead of executing it. The --dump switch does not validate the presence
of a <benchName>. This switch can be used to review the generated code.

The auto-generated workbench has the following high-level sections:

┌───────────────┐
│ INIT │ <---- Initial declarations are done here
├───────────────┤
│ SOURCE │ <---- Shelves and bench are `sourced` here
├───────────────┤
│ ENTRYPOINT │ <---- Entrypoint function is called with `args`
└───────────────┘

The INIT section of the workbench contains basic/no-op implementations
for the default functions. Shelves and Bench are expected to define their
own functions with an actual implementation to override those in INIT.

The INIT section defines the following variables:

	WORKBENCH_ENV_NAME: Stores the benchName as the environment name

	ORIG_PS1: Stores the current PS1, while PS1 is reset to
prefix the current benchName

	WORKBENCH_CHAIN: Stores a : separated list of each sourced shelf
and bench in the order in which they were sourced.

An entrypoint is a shell functions invoked after sourcing all the shelves
and the bench. Each WorkBench execution command has a different
entrypoint function associated with it. Any trailing arguments passed
to the WorkBench’s execution command are passed on to the entrypoint.

Entrypoint function names are configurable. The table below lists the
environment variables which define the entrypoints and the default
function names associated with each of them.

	Type

	Environment Variable Name

	Default Function Name

	Command

	entrypoint

	WORKBENCH_ACTIVATE_FUNC

	workbench_OnActivate

	a

	entrypoint

	WORKBENCH_RUN_FUNC

	workbench_OnRun

	r

	entrypoint

	WORKBENCH_NEW_FUNC

	workbench_OnNew

	n

The entrypoint is invoked by calling the entrypoint environment variable.
Thus the value of the entrypoint environment variable can be redefined in
the shelf or the bench to point to a non-default function as well.

Entrypoint Example

When wb r <benchName> arg1 arg2 is executed, then the function that
maps to WORKBENCH_RUN_FUNC becomes the actual entrypoint.
The default entrypoint function name is workbench_OnRun and the
INIT section has an implemetation for it.

A shelf or bench could redeclare workbench_OnRun multiple times;
in files at different depths. The last declared implementation will be the one
that executes with arguments arg arg2

It is also possible that WORKBENCH_RUN_FUNC could be assigned a new
value like my_custom_func anywhere in the shelves or the bench.
The last declared value of WORKBENCH_RUN_FUNC is now the new
entrypoint function, and the last declared implementation of the
function my_custom_func is the one that executes with
arguments arg1 arg2

Executing workbench environments – [wb a, wb r, wb n]

The workbench stores the execution command in the varible
WORKBENCH_EXEC_MODE. Shelf and Bench code could take decisions
based on this value.

A no-op function workbench_pre_execute_hook executes just before
a workbench is built. This function could be implemented by the
WORKBENCH_RC with logic that decides whether to go ahead with
execution. Refer to the Security chapter for more details.

Activate – [wb a]

The activate command is equivalent of bash --rcfile <workbench>. It
spawns a subshell with the auto-generated workbench, with
WORKBENCH_ACTIVATE_FUNC as the entrypoint.

Nested activations are prevented by checking if WORKBENCH_ENV_NAME has
already been set.

Deactivating a workbench is done by simply running exit.

Occasionally, there may be cases where some code needs to be executed when
an exit is issued. This can be achieved by redeclaring the exit function,
calling user-defined code, followed by calling builtin exit.

Example:

exit () {
 <your-deactivation-code-goes-here>
 builtin exit $? 2> /dev/null
}

Run – [wb r]

The run command is the equivalent of bash -c <workbench>. It
executes the workbench non-interactively, with WORKBENCH_RUN_FUNC
as the entrypoint. The run command is used to invoke one-off commands
which may be defined in the workbench.

For example, a workbench could declare subcommands like start, stop,
build, deploy etc, as independent functions. The entrypoint function
defined by WORKBENCH_RUN_FUNC could parse arguments and dispatch them
to respective subcommands.

Thus, for the same workbench, the activate and run commands could be
used to trigger different functionality.

New – [wb n]

The new command is a variant of the run command. It’s execution is
similar to that of the run command (non-interactive), but with
WORKBENCH_NEW_FUNC as the entrypoint.

When the command wb n <newBenchName> is invoked, WorkBench creates
all intermediate shelf files (if they don’t already exist) followed by
the bench. The bench must either not exist, or must be a zero-byte file.

The last declared function as defined by WORKBENCH_NEW_FUNC is then
called, which is expected to write contents into the new bench.

Consider a programming language like Python, Go etc. All projects of a
language would require a common set of steps to build up a workspace for
the language. For Python, tools like virtualenv, with virtualenvwrapper
are already available. Similar tools exist for other languages too.

It is easy to implement code in a shelf to define the behavior for all
projects for a particular language/group. The code could wrap around an
existing tool (like virtualenv) or provide all functionality by itself.

The aspect that varies between each project of a language might be: (a) Name,
(b) Project URL, may be (c) language version etc. But, such values are few.
The shelf’s implementation of WORKBENCH_NEW_FUNC could request this
information for a new project and dump the metadata into the bench.
The bench could therefore be minimal; may be an env file with key-values.

Environment Variables

The table below contains a list of environment variables which WorkBench
consumes in its configuration.

	Environment Variable Name

	Default Value

	Description

	WORKBENCH_RC

	$HOME/.workbenchrc

	Auto-load location for the rcfile

	WORKBENCH_HOME

	$HOME/.workbench

	Directory containg shelves and benches

	WORKBENCH_ALLOW_INSECURE_PATH

	–

	Skips using ‘realpath’ if set.

	WORKBENCH_GREPPER

	egrep

	Grep tool used to list env. vars

	WORKBENCH_AUTOCONFIRM

	–

	Skip confirmation prompt for rm if set

	WORKBENCH_SHELF_FILE

	wb.shelf

	Filename for the shelf file

	WORKBENCH_BENCH_EXTN

	bench

	File extension for the bench file

	WORKBENCH_ACTIVATE_CMD

	/bin/bash –rcfile

	Command to invoke subshell in intereactive mode

	WORKBENCH_COMMAND_CMD

	/bin/bash -c

	Command to invoke a script in non-interactive mode

	WORKBENCH_ACTIVATE_FUNC

	workbench_OnActivate

	Entrypoint function name for the activate command

	WORKBENCH_RUN_FUNC

	workbench_OnRun

	Entrypoint function name for the run command

	WORKBENCH_NEW_FUNC

	workbench_OnNew

	Entrypoint function name for the new command

The table below contains a list of environment variables which are injected as part of the
auto-generated workbench.

	Environment Variable Name

	Description

	WORKBENCH_ENV_NAME

	Name of the currently active bench

	WORKBENCH_EXEC_MODE

	The mode in which the workbench was launched. One of ‘a’, ‘c’, ‘n’

	WORKBENCH_CHAIN

	A : separated list of every sourced shelf and bench

	ORIG_PS1

	Stores the existing PS1 before redefining it

Exit Codes

WorkBench exits with different exit-codes when it encounters errors. The table
below lists the error names, exit-codes and a description.

	Error Name

	ExitCode

	Description

	ERR_FATAL

	1

	General/fatal errors.

	ERR_MISSING

	3

	Resource does not exist.

	ERR_INVALID

	4

	Failed input validation.

	ERR_DECLINED

	5

	Opted No on confirmation prompt

	ERR_EXISTS

	6

	Resource already exists.

Security

WorkBench is a bash script capable of executing shell code from your system.
This page discloses some of the inner-workings of WorkBench for user
awareness. It also covers guidelines and best-practices that you should
follow to securely use WorkBench.

It is vital that you understand the contents of this page before you use
WorkBench. A discerning user might find the contents here a tad verbose.
However, it is in the best interest of a potential user.

This document assumes that you are already operate a secure system where the
statements below (but not limited to) are true:

	You trust the OS binaries that are installed.

	Only you have access to the contents of your user directory. ($HOME)

	You own and understand the contents of your shell’s rcfiles. (like .bashrc).

The rest of the this page discusses how WorkBench fits in, and the baggage
that it brings with it.

Single User Context

WorkBench is designed for a single-user. You should use WorkBench on systems
where you (as a *nix user), and ONLY YOU own and are in are in
complete control of:

	WorkBench (the tool), and the location where it is deployed.

	The location(s) and contents of all WORKBENCH_RC files

	The location(s) and contents of all WORKBENCH_HOME folders (the entire tree)

Every time you run wb, you are not only executing the code in wb, but
also the contents of the rcfile. The default location $HOME/.workbenchrc
is tried if WORKBENCH_RC is not defined. The rcfile here is a shell
script. The code within it will execute even without the execute permission
set on the file (similar to your .bashrc, .bash_profile)

Depending on values defined against WORKBENCH_SHELF_FILE and
WORKBENCH_BENCH_EXTN, all files matching the filename and extension
respectively within your WORKBENCH_HOME are assumed to be shell scripts.
Code from these files will be sourced when you invoke wb a, wb r or wb n
commands. As above, they too don’t require the execute permission to be
set on them.

WorkBench is not in control of any files or commands that may be sourced or
executed within shelves or benches. It is possible that code
(content within the shelf or bench) might source files outside of
WORKBENCH_HOME, or outside of your user directory too.

The name of the entrypoint function that WorkBench executes can be
redefined using WORKBENCH_ACTIVATE_FUNC, WORKBENCH_RUN_FUNC and
WORKBENCH_NEW_FUNC respectively. Depending on the command invoked, the
control will land on one of these functions.

The values for these variables can be replaced by any executable binary or
an existing definition in your current shell (parent shell).

Example:

WORKBENCH_RUN_FUNC=echo wb r <benchName> Hello World

Will print "Hello World" in the last line of the command's output.

Guidelines

	Ensure/change the ownership of wb, rcfiles and all contents of
WORKBENCH_HOME to you (as a user). Ensure that write and execute
permissions are not available for group and all.

Ideal permissions:

chmod 0700 <wb>
chmod 0600 <rcfiles>
chomd 0600 <WORKBENCH_HOME and all its files>

	Do not introduce new content into WORKBENCH_HOME that you haven’t
personally written or reviewed.

For example:

	Do not extract archives inside WORKBENCH_HOME.

	Do not git clone repositories into your WORKBENCH_HOME.

You must treat the contents of WORKBENCH_HOME in the same light as
your rcfiles, dotfiles etc.

Detecting changes in your WORKBENCH_HOME

WorkBench provides a function workbench_pre_execute_hook which allows
you to implement your own pre checks before executing a workbench. This
is an ideal place to implement checks to track change to WORKBENCH_HOME.

You can implement workbench_pre_execute_hook as a function inside your
WORKBENCH_RC. If the function returns with a non-zero return code,
WorkBench will exit with that code.

Perhaps the easiest way to achieve this would be to turn your WORKBENCH_HOME
into a Git repo and let Git track your changes. (Example: git status -s)

Canonical paths and directory traversal

WorkBench uses the realpath (GNU) utility to convert all relative paths to
absolute paths before operating on them. WorkBench ensures that every shelf
and bench that gets sourced as part of building a workbench, also reside
within WORKBENCH_HOME.

Important

	WORKBENCH_RC and WORKBENCH_HOME are excluded from checks.
It is highly recommended that they reside inside your HOME
directory, but this is not enforced.

	WorkBench does not detect source statements inside the code residing
in a shelf or bench. Placing such source statements is discouraged.
If you do, then you should ensure that you source it from locations
within WORKBENCH_HOME.

It is possible that realpath might not be present on every OS, and you
might have to install it before using WorkBench.

WorkBench also provides a way to disable this feature. You can do so by
setting WORKBENCH_ALLOW_INSECURE_PATH to any value to disable directory
traversal checks.

What is a directory traversal attack? How is it harmful?

Directory traversal attack is a way by which software is made to expose
or operate on files outside a directory boundary. It takes the form of an
attack when it is used with malicious intent. WorkBench implements checks
largely to prevent inadvertent sourcing of content.

A directory traversal attack involves a path derived from user input which
includes ../. This indicates the parent of the intended directory.
With directory traversal checks disabled, one could supply a command like:
wb r ../benchName to access a shelf and a bench that is located at
the parent directory of WORKBENCH_HOME. The input could include multiple
../ to craft a path that points to any other file on your drive.

Note

WorkBench strips preceeding / from shelf and bench names,
and makes them relative to WORKBENCH_HOME. This handles the
case of input shelf or bench names supplied as absolute paths.

Temp files

WorkBench creates temp files with the auto-generated workbench contents
when the commands wb a, wb r, wb n are executed without the
--dump switch. The temp files are created using mktemp utility.
This creates a file within /tmp with the content that you see in the
--dump switch. The temp files have a default permission 0600 which
makes them accessible to only you, the user. WorkBench deletes the temp
file after the command completes execution.

Contribution

You are welcome to contribute to the WorkBench project.

WorkBench has been built with the philosophy of less-is-more. It is
nearly feature complete. No big features are planned. Improvements however
are always welcome.

Where can I contribute?

You can contribute to:

	Discussing and suggesting improvements to provide hooks or tweaks,
such that WorkBench could be adopted for use in more scenarios.

	Testing: WorkBench compatibiltiy tests are work-in-progress. This
involves testing against various bash versions and against other
shells (zsh, ash, etc)

	A plan to start a Wiki is on the cards, where you can contribute your
ideas and recipies on the best ways to use WorkBench.

How do I start?

You must start a discussion by opening a Github Issue first. You’ll be
guided on the next steps through the discussion. PR which don’t go through
this route will probably be rejected.

Testing

WorkBench was built with TDD. Unittests are written in Python3’s
unittest framework. They are best run with Python 3.7.

Tests can be run by cloning the repo and executing make test

Code coverage is on the cards using bashcov. This can be taken up
after an enhancement in bashcov Issue-47 [https://github.com/infertux/bashcov/issues/47] is addressed.

License

All content, logos, source-code under the WorkBench project is release under
the Apache 2.0 license, unless explicitly stated otherwise.

A copy of the license can be found in the LICENSE [https://github.com/pshirali/workbench/blob/master/LICENSE] file in the WorkBench repo [https://github.com/pshirali/workbench].

Index

 _static/logo-black.png

_static/logo-brown.png

_static/file.png

_static/minus.png

_static/plus.png

_static/logo-white-padded.png

_static/logo-white.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to WorkBench’s documentation

 		
 Installation

 		
 Install from source

 		
 Using curl

 		
 Using wget

 		
 Configuration

 		
 Configuration using rcfile

 		
 The WorkBench Home directory

 		
 Completion

 		
 Introduction to subshells

 		
 WorkBench Concepts

 		
 Introduction

 		
 Shelves and Benches

 		
 Shelf

 		
 Bench

 		
 Analogy

 		
 Benefits

 		
 Usage Guide

 		
 View version and env – [wb -V, wb -E]

 		
 Operating on Shelves and Benches – [wb s, wb b]

 		
 List

 		
 Print path to the underlying file

 		
 Run a command against the underlying file

 		
 Auto-generated workbench and Entrypoints

 		
 Entrypoint Example

 		
 Executing workbench environments – [wb a, wb r, wb n]

 		
 Activate – [wb a]

 		
 Run – [wb r]

 		
 New – [wb n]

 		
 Environment Variables

 		
 Exit Codes

 		
 Security

 		
 Single User Context

 		
 Guidelines

 		
 Detecting changes in your WORKBENCH_HOME

 		
 Canonical paths and directory traversal

 		
 What is a directory traversal attack? How is it harmful?

 		
 Temp files

 		
 Contribution

 		
 Where can I contribute?

 		
 How do I start?

 		
 Testing

 		
 License

_static/ajax-loader.gif

_static/padded/logo-white-padded.png

_images/logo-black.png

